Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Photodiagnosis Photodyn Ther ; 34: 102287, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1174451

ABSTRACT

The 2019 novel coronavirus (2019-nCoV; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has witnessed a rapid and global proliferation since its early identification in patients with severe pneumonia in Wuhan, China. As of 27th May 2020, 2019-nCoV cases have risen to >5 million, with confirmed deaths of 350,000. However, Coronavirus disease (COVID-19) diagnostic and treatment measures are yet to be fully unraveled, given the novelty of this particular coronavirus. Therefore, existing antiviral agents used for severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) were repurposed for COVID-19, taking their biological features into consideration. This study provides a concise review of the current and emerging detection and supervision technologies for SARS-CoV-2, which is the viral etiology of COVID19, and their performance characteristics, with emphasis on the novel Nano-based diagnostic tests (protein corona sensor array and magnetic levitation) and treatment measures (treatment protocols based on nano-silver colloids) for COVID-19.


Subject(s)
COVID-19 , Nanoparticles , Photochemotherapy , China , Humans , Photochemotherapy/methods , Photosensitizing Agents , SARS-CoV-2
2.
Comput Biol Med ; 133: 104372, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171429

ABSTRACT

COVID-19 is a major health threat across the globe, which causes severe acute respiratory syndrome (SARS), and it is highly contagious with significant mortality. In this study, we conduct a scenario analysis for COVID-19 in Malaysia using a simple universality class of the SIR system and extensions thereof (i.e., the inclusion of temporary immunity through the reinfection problems and limited medical resources scenarios leads to the SIRS-type model). This system has been employed in order to provide further insights on the long-term outcomes of COVID-19 pandemic. As a case study, the COVID-19 transmission dynamics are investigated using daily confirmed cases in Malaysia, where some of the epidemiological parameters of this system are estimated based on the fitting of the model to real COVID-19 data released by the Ministry of Health Malaysia (MOH). We observe that this model is able to mimic the trend of infection trajectories of COVID-19 pandemic in Malaysia and it is possible for transmission dynamics to be influenced by the reinfection force and limited medical resources problems. A rebound effect in transmission could occur after several years and this situation depends on the intensity of reinfection force. Our analysis also depicts the existence of a critical value in reinfection threshold beyond which the infection dynamics persist and the COVID-19 outbreaks are rather hard to eradicate. Therefore, understanding the interplay between distinct epidemiological factors using mathematical modelling approaches could help to support authorities in making informed decisions so as to control the spread of this pandemic effectively.


Subject(s)
COVID-19 , Pandemics , Humans , Malaysia/epidemiology , Reinfection , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL